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The Role of the Apoptotic Machinery
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Multicellular organisms have evolved processes to prevent abnormal proliferation or inap-
propriate tissue infiltration of cells, and these tumor suppressive mechanisms serve to prevent
tissue hyperplasia, tumor development, and metastatic spread of tumors. These include
potentially reversible processes such as cell cycle arrest and cellular senescence, as well
as apoptotic cell death, which in contrast eliminates dangerous cells that may initiate tumor
development. Tumor suppressive processes are organized as complex, extensive signaling
networks, controlled by central “nodes.” These “nodes” are prominent tumor suppressors,
such as P53 or PTEN, whose loss is responsible for the development of the majority of human
cancers. In this review we discuss the processes by which some of these prominent tumor
suppressors trigger apoptotic cell death and how this process protects us from cancer devel-
opment.

A malignant tumor is characterized by the
ability to expand in an uncontrolled man-

ner, destroy normal tissue architecture, and ul-
timately undergo metastatic spread (Hanahan
and Weinberg 2000). Although the number of
mutations required for neoplastic transforma-
tion may vary, all tumors are reliant on two crit-
ical mechanisms for their development; the
activation of oncogenes that promote prolifer-
ation and survival of cancer cells, as well as the
inactivation of tumor suppressor genes that
normally repress development and growth of
tumors (Hanahan and Weinberg 2000).

Oncogenes can be activated via multiple
mechanisms, including chromosomal translo-
cations, deletions or insertions, as well as point

mutations. One such example is the transloca-
tion between chromosomes 9 and 22 that is
present in most cases of chronic myeloid leuke-
mia. The juxtaposition of the BCR and c-ABL
genes results in the production of an abnormal
BCR-ABL fusion protein with constitutive ki-
nase activity (Deininger et al. 2005). However,
in other cancer-causing chromosomal translo-
cations, such as the t[8;14] translocation in Bur-
kitt’s lymphoma, the coding sequence of the
oncogene, c-MYC, is unchanged; rather its acti-
vation results from deregulated expression in B
lymphoid cells as a consequence of its proximity
to the IGH gene enhancer (Cory et al. 1987).
Tumorigenesis promoted by deregulated kinase
activity frequently results from the acquisition
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of point mutations. In this context, a single ami-
no acid substitution can dramatically enhance
kinase activity by preventing binding of negative
regulators or “locking” the catalytic domain
in the active conformation. This is exemplified
by the BRAF(V600E) mutation frequently ob-
served in melanoma or colon carcinoma (Pou-
likakos and Rosen 2011) and the activating
mutations in EGF-R observed in lung adenocar-
cinoma (Sharma et al. 2007).

Analogous to the activation of oncogenes,
tumor suppressor genes can be inactivated
through multiple mechanisms, including large-
scale chromosomal alterations or point muta-
tions. However, in most cases both alleles of the
gene must be compromised to abolish gene
function, unless the mutated protein can act
in a dominant-negative fashion to block the
activity of its wild-type counterpart.

Multicellular organisms have evolved a
plethora of mechanisms to restrain the growth
or even eliminate aberrant cells—these process-
es can all function as tumor suppressors. Nota-
bly, of the attributes that cells must acquire to
become cancerous (“hallmarks of cancer”) dis-
cussed by Hanahan and Weinberg (2000), sev-
eral relate to escape from regulatory processes
that would normally suppress tumor growth.
They include cell cycle arrest, cellular senes-
cence, and cell death; of these only cell death is
irreversible, all others can (at least potentially)
be reversed. In this review, we describe the mech-
anisms by which tumor suppressors that are dis-
abled in a broad range and large fraction of can-
cers trigger cell death, and how components of
the apoptotic machinery can themselves act as
tumor suppressors.

APOPTOSIS AS A MEDIATOR
OF TUMOR SUPPRESSION

Apoptosis, also known as programmed cell
death, is a highly regulated program of ordered
cellular destruction that facilitates the removal
of damaged or superfluous cells. This process is
critical for many physiological processes, in-
cluding embryonic development and tissue ho-
meostasis in adulthood (Strasser et al. 2000;
Hotchkiss et al. 2009). In vertebrates, apoptosis

can be initiated by two distinct, albeit ultimately
converging, signaling pathways (Strasser et al.
1995), termed “BCL-2-regulated” (“intrinsic,”
“mitochondrial,” “stress-induced”) (Chipuk and
Green 2008) and “death receptor-” (Strasser
et al. 2009) induced apoptosis (Fig. 1). In both
pathways, cell demolition is mediated by aspar-
tate-specific cysteine proteases (caspases) that
proteolyze hundreds of cellular proteins (Tim-
mer and Salvesen 2007). Cell surface “death re-
ceptors” (members of the TNF-R family with an
intracellular “death domain,” e.g., FAS, TNF-
R1) can trigger apoptosis by direct activation
of caspases, through adaptor protein (FADD,
TRADD)-mediated activation (via conforma-
tional change) of initiator caspase-8, which
then proteolytically activates effector caspases
(caspase-3, -6, and -7) (Strasser et al. 2009)
(Fig. 1). Mutations in FAS or its ligand, FASL,
perturb peripheral lymphoid homeostasis, ulti-
mately leading to severe lymphadenopathy, a
systemic autoimmune disease and a predisposi-
tion to hematopoietic malignancy in both mice
(Watanabe-Fukunaga et al. 1992; O’Reilly et al.
2009) and humans (Rieux-Laucat et al. 1995;
Drappa et al. 1996).

The “BCL-2-regulated” apoptotic pathway
can be activated by developmental cues and a
broad range of cytotoxic insults, including cy-
tokine deprivation or DNA damage. This path-
way is regulated by the BCL-2 protein family
and relies (at least in part) on the initiator cas-
pase-9 (and its adaptor APAF-1) to activate the
effector caspases (Marsden et al. 2002; Shi 2002;
Riedl and Shi 2004) (Fig. 1). The BCL-2 protein
family is composed of one antiapoptotic and
two proapoptotic subgroups that regulate com-
mitment to cell death through complex pro-
tein–protein interactions (Youle and Strasser
2008). The antiapoptotic members (BCL-2,
BCL-XL, BCL-W, MCL-1, and A1) share four
BH (BCL-2 Homology) domains and are essen-
tial for cell survival, functioning in a cell
type-specific manner, albeit with significant
functional overlap (Youle and Strasser 2008).
Proapoptotic BAX and BAK share remarkable
structural similarity with their prosurvival rel-
atives, but they have largely overlapping func-
tions during the execution of apoptosis and are
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essential for mitochondrial outer membrane
permeabilization (MOMP) with consequent re-
lease of apoptogenic molecules (e.g., cyto-
chrome c, DIABLO/Smac) and activation of cas-
pase-9 (Lindsten et al. 2000; Chipuk and Green

2008). The proapoptotic BH3-only proteins
(BIM, PUMA, BID, BAD, BMF, HRK, BIK,
and NOXA) share with each other and the
BCL-2 family overall only the BH3 domain
and are required for initiation of apoptosis

Caspase-8

FAS

FASL

TNF-R1

TNF

FADD TRADD
Bcl-2

MCL-1

A1

Bcl-XL

Bcl-W

BAK BAX

Caspase-9

BIM
PUMA

NOXA

BAD
BMF

Cytochrome c
release

Bcl-2-regulated pathway Death receptor pathway

tBID

Caspase-3,6,7

Apoptosis

Figure 1. Apoptosis can be initiated by activation of two distinct, albeit ultimately converging, pathways, the
“Bcl-2-regulated pathway” (left; also known as the “stress” or “mitochondrial” pathway) and the “death receptor
pathway” (right). As the name suggests, protein–protein interactions between members of the Bcl-2 family
govern activation of the Bcl-2-regulated pathway, whereas binding of their cognate ligands activates the death
receptors (e.g., FAS, TNF-R1). Cellular demolition is performed by the effector caspases that act downstream of
both pathways. Proteins that have been identified as suppressors or oncogenes are indicated in red or green,
respectively.
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(Huang and Strasser 2000). These proteins are
activated transcriptionally and/or post-transla-
tionally and exert stimulus-specific as well as cell
type-specific actions. For example, BIM is criti-
cal for cytokine deprivation-induced apoptosis
(Bouillet et al. 1999), whereas PUMA and, to a
lesser extent, NOXA trigger the apoptosis acti-
vated by the tumor suppressor P53 (Jeffers et al.
2003; Villunger et al. 2003; Michalak et al. 2008).
BH3-only proteins are thought to activate BAX/
BAK either through direct binding and/or indi-
rectly by binding to their repressors, the prosur-
vival BCL-2 proteins (Chipuk and Green 2008;
Merino et al. 2009).

Deregulated expression of prosurvival BCL-
2 proteins (e.g., because of the t[14;18], BCL2;
IGH chromosomal translocation in human fol-
licular center lymphoma) promotes tumori-
genesis by sustaining the viability of cells un-
dergoing neoplastic transformation, thereby
facilitating the acquisition of additional onco-
genic mutations (Vaux et al. 1988; Strasser et al.
1990, 1993). Similarly, loss of proapoptotic
BCL-2 family members in isolation is not po-
tently transforming, but it is consistent with the
notion that cancer cells must acquire the ability
to evade apoptosis; such defects promote tu-
morigenesis when they occur in concert with
additional oncogenic mutations. For example,
homozygous deletion of the BIM gene was
found in �20% of human mantle cell lympho-
ma cases and, accordingly, loss of Bim acceler-
ated Em-MYC-driven lymphomagenesis in
mice (Egle et al. 2004). Moreover, �40% of hu-
man Burkitt’s lymphomas fail to express PUMA
(Garrison et al. 2008), and loss of PUMA can
also (like loss of BIM) accelerate lymphoma de-
velopment in Em-MYC transgenic mice (Garri-
son et al. 2008; Michalaket al. 2009). In addition,
loss of the BH3-only proteins NOXA (Michalak
et al. 2010) and BMF (Labi et al. 2008) as well as
loss of BAX (Eischen et al. 2001) were found to
promote development of lymphoma in different
experimental mouse models, but so far deregu-
lation of these genes has not been detected in
human cancers. As mentioned above, defects
in apoptosis by themselves are not potently
transforming. Therefore, mutations of onco-
genes or tumor suppressor genes that encode

master regulators of multiple pathways (includ-
ing apoptosis) are frequently observed in human
cancers because one (or two) oncogenic lesions
will simultaneously activate several tumorigenic
processes. In the following sections, we discuss
the mechanisms by which tumor suppressors
trigger apoptosis and their importance for pre-
vention of neoplastic disease.

TUMOR SUPPRESSORS AND
THEIR MECHANISMS FOR
INDUCING APOPTOSIS

P53, Orchestrator of the Cellular
Response to DNA Damage, Hypoxia,
and Oncogenic Stress

The tumor suppressor P53, a transcriptional
regulator, is mutated in �50% of human can-
cers and in those cancers that lack P53 muta-
tions, P53 signaling is often defective because of
the acquisition of some other mutation(s)
(Vousden and Lane 2007). P53 can be activated
by a broad range of cytotoxic stress signals, in-
cluding DNA damage, hypoxia, and activation
of certain oncogenes (e.g., c-MYC) (Vousden
and Lane 2007). In the majority of unstressed
cells, P53 mRNA is expressed constitutively, but
P53 protein levels are low. This is mainly attrib-
utable to the action of MDM2, an E3 ubiquitin
ligase, which targets P53 for K48 linkage-medi-
ated ubiquitination and proteasomal degrada-
tion (Haupt et al. 1997; Kubbutat et al. 1997).
Stress-induced P53 activation involves stabiliza-
tion of the P53 protein. This is mediated pri-
marily through inhibition of MDM2 by the tu-
mor suppressor ARF (Vousden and Lane 2007).
However, in addition, multiple posttranslation-
al modifications, including phosphorylation,
acetylation, and neddylation, also affect P53
stability, its binding to target genes, and/or its
transcriptional activity (Vousden and Lane
2007). Upon activation, P53 binds as a homo-
tetramer to specific sequences within the regu-
latory regions of a broad range of target genes
(Riley et al. 2008) and thereby triggers a multi-
tude of effector pathways, including cell cycle
arrest (Livingstone et al. 1992), cellular senes-
cence (Metz et al. 1995), coordination of DNA
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repair, and apoptosis (Vousden and Lane 2007)
(Fig. 2). In addition, P53 triggers a process that
regulates its own activity that operates mainly
through direct transcriptional activation of
MDM2 (Barak et al. 1993; Wu et al. 1993). The
critical importance of appropriate P53/MDM2
feedback regulation was revealed by the dis-
covery that loss of MDM2 causes embryonic
lethality in mice and that this can be prevented
by concomitant loss of P53 (Jones et al. 1995;
Montes de Oca Luna et al. 1995).

It remains unclear why a specific effector
pathway will dominate in a particular cell in
response to P53 activation. For example, why
does low-dose g-irradiation elicit cell G1/S cy-
cle arrest and DNA repair in fibroblasts but ap-
optosis in thymocytes? It is possible that parallel
signaling pathways, active in some cells but not
others, can modulate the overall outcome of
P53 activation. In addition, the various post-
translational modifications may affect the pref-
erence of P53 for different target genes, thereby
determining which effector pathway will pre-
dominate. To induce apoptosis, P53 directly
transcriptionally up-regulates the expression
of several proapoptotic BCL-2 family members,
the BH3-only proteins PUMA (Nakano and
Vousden 2001; Yu et al. 2001) and NOXA
(Oda et al. 2000) as well as the multi-BH do-
main proapoptotic protein BAX (Miyashita and

Reed 1995). Experiments with gene-targeted
mice have shown that P53-induced apoptosis
in a broad range of cell types is mediated pre-
dominantly by PUMA and to lesser extent by
NOXA (Jeffers et al. 2003; Villunger et al. 2003;
Erlacher et al. 2005; Naik et al. 2007; Michalak
et al. 2008). BAX is expressed in P53-deficient
cells, and many P53-independent apoptotic
stimuli such as glucocorticoids rely on BAX
(plus BAK) for cell killing (Lindsten et al.
2000). Thus, the P53-mediated induction of
BAX probably serves to increase the efficiency
of apoptosis signaling but does not determine
whether a cell will live or die. As mentioned, P53
activates diverse effector pathways and it is not
yet clear which one(s) is/are critical for tumor
suppression. Loss of P53’s apoptotic pathway,
through loss of PUMA (Garrison et al. 2008;
Michalak et al. 2009) and/or NOXA (Michalak
et al. 2010), can accelerate lymphoma develop-
ment elicited by MYC overexpression or low-
dose g-irradiation, respectively. However, in
contrast to P53-deficient mice (Donehower
et al. 1992), animals lacking both PUMA and
NOXA are not tumor prone, although their cells
display comparable resistance to P53-depen-
dent apoptotic stimuli (e.g., g-irradiation) as
those lacking P53 itself (Michalak et al. 2008).
Thus, apoptosis induction does not account for
all of the tumor suppressive action of P53. Loss

MDM2

P53 feedback 
regulation

PUMA NOXA

BAXFAS

Apoptosis

p21 14-3-3σ

Cell cycle arrest
DNA 
repair

GADD45 PAI-1

Senescence

TSP-1

Inhibition of
angiogenesis

P53
P

P
P53

P

P

P53
P

P

P53
P

P

Figure 2. The tumor suppressor P53 acts as a transcriptional regulator. It has the capacity to activate diverse
cellular processes. Stimulus and cell type-specific effects determine which particular effector pathway(s) will
dominate.
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of P21, the major effector of P53-mediated G1/
S cell cycle arrest, also does not constitute a
potently transforming oncogenic lesion (Deng
et al. 1995). It therefore appears that it is the
composite loss of several effector pathways (co-
ordination of DNA repair, cell cycle arrest, ap-
optosis, and/or senescence) and not the loss of
a single process that accounts for the high inci-
dence and rapid onset of tumors when P53 is
mutated in mice (Donehower et al. 1992) and
in humans (Li-Fraumeni syndrome [Srivastava
et al. 1990]). Recent evidence has emerged that
suggests that signaling resulting from acute P53
activation is distinct from its ability to effect
tumor suppression (Brady et al. 2011). Further-
more, there is now evidence that even combined
defects in P53-mediated induction of apopto-
sis, cell cycle arrest, and cell senescence are all
dispensable for P53-mediated tumor suppres-
sion (Li et al. 2012). This may indicate that
regulation of cellular metabolism and perhaps
coordination of DNA repair may be critical for
the tumor suppressive action of P53.

Retinoblastoma Protein, a Negative
Regulator of Cell Cycle Entry

The retinoblastoma protein (RB) is the central
element in a tumor suppression network that is
interconnected with that of P53 through the
regulation of cell cycle arrest and also through
activation by oncogenic stress (Lee et al. 1987).
Rb was the first tumor suppressor identified in
human cancer following the realization that in-
heritance of one mutated copy of Rb followed
by mutation or loss of the wild-type allele re-
sulted in the development of familial retino-
blastoma in early childhood (Lee et al. 1987).
Accordingly, heterozygous loss of RB in mice
results in the development of pituitary tumors
(that have lost the wt Rb allele), but curiously not
retinoblastoma (Jacks et al. 1992). As for P53,
the critical importance of the RB protein in the
regulation of cell proliferation came from the
discovery that DNA tumor viruses, such as the
human papillomaviruses (HPV), promote host
cell survival and proliferation and thereby viral
replication by encoding specific inhibitors of
these two tumor suppressors (Levine 2009). At

that time, it was thought that most cancers were
of viral origin; although this has not proven to be
the case, the studies that have followed have il-
luminated RB (and P53) as critical components
of the tumor suppression network.

RB controls cell proliferation through its
regulation of the E2F family of transcription
factors. In its active form, RB binds and seques-
ters the E2F proteins, which play critical roles in
S phase entry. Upon phosphorylation, RB re-
leases the E2F proteins allowing them to regu-
late transcription of their target genes. In addi-
tion to its role in cell cycle regulation, RB is also
critical for the differentiation programs of cer-
tain tissues; however, the relevance, if any, of
these activities for tumor suppression is cur-
rently unclear. This division of labor is achieved
through the presence of distinct subsets within
the E2F family. E2F1-3 promote cell cycle pro-
gression and are regulated by RB (Lees et al.
1993), whereas E2F4-8 act as transcriptional re-
pressors and promote cell cycle exit and differ-
entiation. In addition to its role in controlling
P53 protein levels, MDM2 can also regulate the
process by which E2F1 and its cofactor, DP1,
acts to promote cell division (Martin et al.
1995; Xiao et al. 1995). The ability of MDM2
to potentiate E2F1 activity relies on inhibition
of SKP2-mediated degradation of E2F1 (Zhang
et al. 2005). The critical role that the activator
E2Fs play in the control of proliferation is un-
derscored by the finding that the loss of their
negative regulator, RB, and its homologs abro-
gates the G1/S checkpoint and thereby pro-
motes cellular immortalization (Dannenberg
et al. 2000; Sage et al. 2000).

In addition to their role in promoting prolif-
eration,paradoxically, theactivatorE2Fscanalso
promote apoptosis, at least in certain settings.
This is particularly clear in the context of DNA
damage when E2F1 is stabilized post-transla-
tionally through ATM-, ATR-, CHK1-, and
CHK2-mediated phosphorylation, as well as by
acetylation (Lin et al. 2001; Pediconi et al. 2003;
Stevens et al. 2003; Urist et al. 2004). These mod-
ifications appear to drive E2F1 to up-regulate
proapoptotic genes (Hershko and Ginsberg
2004), such as the BH3-only gene Bim (O’Con-
nor et al. 1998). This duality of function is
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thought to represent a fail-safe mechanism
whereby cells that have sustained DNA damage
are predisposed to undergo apoptosis following
E2F1 activation rather than DNA synthesis and
proliferation. Indeed, E2F-driven proliferation
can impose an “oncogene activation”-like stress
on cells stimulating P53 in an ARF-dependent
manner (Bates et al. 1998). The relevance of
this signaling network for tumorigenesis is ex-
emplified by studies of an E2F1-driven mouse
model of skin cancer. Overexpression of E2F1
resulted in hyperplasia in the epidermis but
this was held in check by a concomitant increase
in apoptosis (Pierce et al. 1998a). Loss of P53
prevented this apoptosis and caused progres-
sion to skin carcinoma (Pierce et al. 1998b).

The realization that loss of RB, through con-
sequent activation of the E2Fs, can have pro-
apoptotic effects may at least in part explain
why loss of RB activity commonly occurs late
in tumor development and is associated with
progression rather than initiation (Polager and
Ginsberg 2009). Thus, apoptotic signaling may
first need to be compromised (e.g., by loss of
P53) so that the oncogenic stress imposed by
RB inactivation does not eliminate the cells un-
dergoing transformation.

Phosphatase with Tensin Homology, the
Critical Safety Catch of the PI3K/AKT
Signaling Pathway

PTEN (phosphatase with tensin homology), a
lipid phosphatase, is the key negative regulator
of the phosphatidylinositol 3-kinase (PI3K) sig-
naling pathway that promotes cell survival and
proliferation and is frequently deregulated in
various human cancers (Stambolic et al. 1998)
(Fig. 3). Whereas the PI3K pathway is extensive
and can direct diverse cellular processes, PTEN
inhibits this pathway by breaking down PI3K’s
active second messenger molecule, PIP3. It is
also noteworthy that PTEN is a direct P53 target
and thus represents a constituent of the wider
P53 tumor suppression network (Stambolic
et al. 2001). PI3K can be activated by receptor
tyrosine kinases (RTKs) as well as RAS. PI3K in
turn activates AKT (also known as PKB), which
regulates a broad range of cellular processes,

including proliferation, nutrient mobilization,
and cell survival.

AKT was reported to directly inhibit apo-
ptosis by phosphorylating and thereby causing
sequestration of the BH3-only protein BAD (del
Peso et al. 1997). However, given that loss of BAD
(Ranger et al. 2003) or even combined loss of
BAD and BIM (Kelly et al. 2010) had only min-
imal effects on cell survival indicates that this
process is not critical for sustaining survival of
cells undergoing transformation. AKT has also
been shown to promote cell survival by phos-
phorylating FOXO3a, thereby preventing this
transcription factor from activating its target
genes, such as the proapoptotic BH3-only gene
Bim (O’Connor et al. 1998; Dijkers et al. 2000).
BecauseBIMdeletionsare found inhuman man-
tle cell lymphomas (Tagawa et al. 2005) and BIM
loss promotes lymphomagenesis in mice (Egle
et al. 2004), this pathway is more likely to be
critical for tumor suppression.

AKT also activates TOR signaling by inhib-
iting its negative regulators TSC1 and TSC2,

TOR

Nutrient 
mobilization

Bad Bim

FOXO3a

Apoptosis

PTEN

PI3K

Proliferation

AKT/PKB

P

Figure 3. PTEN acts as the endogenous antagonist of
the PI3K-regulated growth pathway. PTEN breaks
down the key signaling intermediate PIP3, thereby
inhibiting downstream signaling mediated by AKT
and TOR. Thus, PTEN negates PI3K’s ability to drive
proliferation, facilitate nutrient mobilization, and in-
hibit apoptosis.
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thereby promoting RHEB activity (Potter et al.
2002). RHEB allows TOR to act as a nutrient
sensor and liberate additional glucose and ami-
no acids to promote cell growth and prolifera-
tion (Garami et al. 2003). This metabolic pro-
cess, inhibited by PTEN, is likely to intersect
with the control of cell survival.

The inappropriate activation of TOR sig-
naling has particular relevance to patients with
Tuberous Sclerosis Complex disease, which is
caused by inherited germline mutations in ei-
ther TSC1 or TSC2 that act in an autosomal
dominant manner. This disease is characterized
by skin, brain, kidney, and heart abnormalities,
with brain tumors accounting for most of the
morbidity and mortality. Inherited mutations
in PTEN are the cause of the PTEN Hamartoma
Tumor Syndrome. These patients are predis-
posed to the development of cancers of the
breast, thyroid, and endometrium, of which
breast tumors are the most common with a life-
time riskof 25%–50%. Accordingly, in mice loss
of one Pten allele resulted in hyperplasia in mul-
tiple organs, such as the skin and prostate, which
progressed to colon adenocarcinoma, gonado-
stromal tumors, teratomas, thyroid carcinoma,
and lymphoma (Di Cristofano et al. 1998; Su-
zuki et al. 1998).

In conclusion, acting as a safety catch at the
apex of the PI3K/AKTsignaling pathway, PTEN
plays a critical role in tumor suppression by
preventing inappropriate activation of cellular
metabolism (via effects on TOR), proliferation
and survival (via effects on proapoptotic BH3-
only proteins).

CYLD, a Negative Regulator of the
NF-kB Signaling Pathway

CYLD is a member of the USP subfamily of de-
ubiquitinases (DUBs), first identified as the gene
mutated in the inherited condition familial cy-
lindromatosis (Bignell et al. 2000) that is char-
acterized by the development of benign skin
tumors. In these patients, one mutated copy
of CYLD is inherited and the wild-type allele is
commonly lost during neoplastic progression.

Although ubiquitination was first identified
as a process for targeting protein substrates

for proteasome-mediated degradation, conju-
gation of ubiquitin moieties to substrates by
linkages other than K48 (particularly K63 link-
ages) can activate signal transduction pathways
(Wertz and Dixit 2010). Like many other cell
signaling processes, ubiquitination is a reversible
process, and whereas ubiquitin chains are as-
sembled on target proteins by E3 ligases, they
can also be hydrolyzed by DUBs. The existence
of �100 DUBs in humans presumably allows
highly specific regulation of a broad range of
signaling pathways.

CYLD acts as a specific negative regulator of
NF-kB signaling through its interaction with
NEMO, the regulatory subunit of the IKK pro-
teins, and TRAF2, an adaptor for several TNF-R
family members (Brummelkamp et al. 2003;
Kovalenko et al. 2003; Trompouki et al. 2003)
(Fig. 4). CYLD antagonizes the conjugation of
K63 ubiquitin chains on TRAF2 and thereby
prevents IKK activation, which is required for
nuclear import and functional activation of NF-
kB complexes (e.g., REL/P50). Transcriptional

Ub
Ub

Ub

Cyclin D1BCL-XL A1

ProliferationApoptosis

BCL-3/p50–p52c-REL/p50–p65

CYLD

Figure 4. CYLD acts proximal to the membrane as a
negative regulator of TNF-induced NF-kB signaling.
The deubiquitinase activity of CYLD allows it to hy-
drolyze K63-linked ubiquitin chains, which are crit-
ical for the activity of multiple components within
the NF-kB signaling network, and thereby acts as a
suppressor by inhibiting proliferation and promoting
apoptosis.
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targets of NF-kB can modulate the duration
and intensity of signaling forming either feed-
forward or negative feedback loops. Whereas
IkBa induction constitutes a negative feedback
loop, BCL3 acts to potentiate signaling through
the noncanonical NF-kB pathway. This process
is of particular relevance to tumorigenesis, be-
cause cyclin D1, which requires BCL3 and NF-
kB for induction and is repressed by CYLD, has
been shown to promote tumor cell proliferation
(Massoumi et al. 2006).

In addition to driving cellular proliferation,
NF-kB also promotes cell survival, at least in part
via transcriptional induction of antiapoptotic
Bcl-2 family members (BCL-2, BCL-XL, and
A1) (Grumont et al. 1999; Lee et al. 1999; Zong
et al. 1999; Chen et al. 2000; Grossmann et al.
2000) as well as several IAP (inhibitor of apopto-
sis) proteins (Chu et al. 1997; Stehlik et al. 1998;
Wang et al. 1998). These NF-kB targets are
known to be essential for the survival of various
cell types in response to diverse stress stimuli.
Collectively, these data indicate that CYLD sup-
presses tumorigenesis by reducing cell cycling
(e.g., via repression of CYCLIN D1 expression)
and by reducing expression of antiapoptotic
regulators. Indeed, CYLD is frequently deleted
in cases of multiple myeloma showing hyperac-
tive NF-kB and abnormalities in cell cycling and
apoptosis induction (Annunziata et al. 2007).

PTPN12, a Safety Catch for Several
Oncogenic Receptor Kinases

PTPN12 has recently been described as a tumor
suppressor in HER2, estrogen receptor and pro-
gesterone receptor negative (so-called “triple
negative”) breast cancer (TNBC) (Sun et al.
2011). PTPN12 expression was found to be
low or undetectable in primary breast cancer
samples, and the locus from which it is ex-
pressed is more frequently lost in TNBC com-
pared to other breast cancer subtypes (Sun et al.
2011). PTPN12 encodes a receptor tyrosine
phosphatase that can dephosphorylate, and
thereby inactivate, several kinase-containing
surface receptors (e.g., ER, HER2, EGF-R) that
promote breast cancer development when ab-
normally activated or overexpressed. Knock-

down of the PTPN12 phosphatase by RNAi
enhanced anchorage-independent growth of
breast epithelial cells in culture and the forma-
tion of abnormal acini in 3D culture conditions
(Sun et al. 2011). Interestingly, the enhanced
proliferation and acini formation of MCF10A
breast epithelial derived cells resulting from re-
duced PTPN12 function was not accompanied
by increased apoptosis (Sun et al. 2011). Mu-
tants of PTPN12 deficient in phosphatase ac-
tivity could not inhibit cell growth and acini
formation, indicating that PTPN12’s catalytic
activity is required for tumor suppression. Con-
sistent with the hypothesis that PTPN12 acts as
a safety catch for HER2 and EGFR signaling for
cell growth, pharmacological or shRNA-medi-
ated inhibition of these receptors reduced the
efficiency of transformation achieved through
PTPN12 knockdown (Sun et al. 2011).

Loss of PTPN12 is thought to promote breast
cancer development by allowing unrestrained
signaling from the HER2, EGF-R, and PDGF-R
receptors (Sun et al. 2011). These receptor tyro-
sine kinases all stimulate pathways for cell pro-
liferation and, through activation of AKTas well
as ERK, they probably also promote cell survival
by repressing expression and/or function of the
BH3-only proteins BIM and BAD (Fig. 5). In-
terestingly, it has been shown that repression of
BIM (and to a lesser extent BAD) is critical for
the sustained survival of certain other cancers
that are driven by other oncogenic kinases—for
example, BCR-ABL in CML (Kuroda et al.
2006), mutant EGF-R in lung cancer (Costa
et al. 2007; Cragg et al. 2007), mutant B-RAF
in melanoma, and colon carcinoma (Cragg et al.
2008).

These data show that oncogenic hyperacti-
vation of several receptor tyrosine kinases that
promote abnormal cell proliferation and sur-
vival can be achieved more readily through loss
of a single common “safety catch” than through
coordinate activation of multiple cell surface re-
ceptors.

CLOSING REMARKS

Multicellular organisms require mechanisms to
ensure appropriate cellularity of their tissues
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and, consequently, these processes impose bar-
riers against tumor development. Some tumor
suppressive mechanisms, such as cell cycle arrest
or cellular senescence, facilitate repair and re-
covery of damaged cells. However, because of
their reversible nature, these mechanisms can
be subverted allowing outgrowth of clonal off-
spring. In contrast, apoptotic cell death elim-
inates cells, and although this unequivocally
prevents clonal outgrowth of mutated cells, it
comes at a cost to the organism. Some cells
once lost cannot be readily replaced, and if the
threshold for apoptosis initiation is set too low,
cells may be eliminated unnecessarily and tissue
degeneration may ensue. So, in tissues that are
critical for function of the organism but have
only low regenerative capacity (e.g., brain), pro-
cesses such as cell cycle arrest, senescence, and
differentiation are more appropriate mechan-
isms for tumor suppression than apoptosis.
Conversely, in tissues with considerable regen-
erative capacity, such as the immune system,

apoptosis would be the preferred mechanism
for tumor suppression.

Although apoptosis is clearly a potent
mechanism for tumor suppression and must
be evaded to facilitate neoplastic transformation
and sustained tumor expansion, other me-
chanisms are also critical to protect us from
cancer. Thus, if escape from cell cycle arrest,
senescence, apoptosis, and the mobilization of
nutrients are all required for tumorigenesis to
proceed, then mutational activation or inactiva-
tion of oncogenes or tumor suppressor genes,
respectively, that regulate a number of these pro-
cesses will enable cells to circumvent homeostat-
ic controls in a more efficient manner than if
each of these processes must be deregulated
independently through multiple oncogenic
events. The prevalence of mutations in certain
tumor suppressors, particularly P53 and PTEN,
in diverse human cancers identifies them as
“Achilles heels” in the cell’s tumor suppression
network, in which loss or inactivation of these
targets can confer on cells undergoing neoplas-
tic transformation multiple advantages rather
than enhanced survival or increased cycling
alone. Deciphering the complex networks for
tumor suppression is not only critical for un-
derstanding the development and growth of
cancer, but also has ramifications for cancer
therapy because many tumor suppressors, and
their processes for apoptosis induction in par-
ticular, also regulate the responses of tumor cells
to anticancer therapy (Johnstone et al. 2002).
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ity to promote proliferation, nutrient mobilization,
and inhibit apoptosis.
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