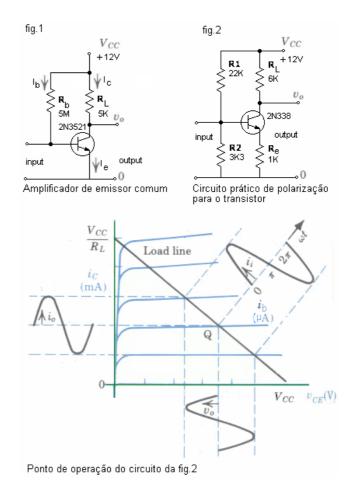
UNIVERSIDADE FEDERAL DO PIAUÍ CCN/DEPARTAMENTO DE FÍSICA

Disciplina: Eletrônica básica Amplificador de pequenos sinais

Prática 8


Conceitos examinados: ponto de operação, circuitos de polarização, realimentação negativa, ganho de corrente. Objetivo:

Obter a curva de respostas do amplificador.

Teoria:

A junção de emissor de um transistor necessita ser polarizada diretamente e, a de coletor, inversamente. Por exemplo, o amplificador de emissor comum da fig.1, no qual a corrente de polarização de base é fornecida através do resistor de base R_b é dada por $V_{\rm CC}/R_b$, em virtude de a resistência direta da junção do emissor ser muito pequena. Como a corrente de coletor é, βI_b , o ponto de operação fica completamente determinado. No entanto, o ganho de corrente depende do ponto de operação. A interseção da reta de carga com a curva da corrente de base, calculada de $I_b = V_{\rm CC}/R_b$, é o ponto de operação.

Este circuito de polarização não é, em geral, satisfatório, pois o ponto de operação varia drasticamente com a temperatura. A comparação entre as características de coletor em temperaturas elevadas e aquelas à temperatura ambiente mostra que a corrente de coletor é muito maior em temperaturas mais elevadas. Como, neste circuito, a corrente de base é fixa, há a possibilidade de o ponto de operação se deslocar para uma região inaproveitável das características do transistor. Obtém-se um circuito de polarização mais satisfatório com a inclusão de um resistor de emissor, conforme está indicado na fig.2. A queda de tensão em $\mathbf{R}_{\mathbf{r}}$ tende a polarizar inversamente a junção de emissor, e o divisor de tensão composto por R_1 e R_2 fixa a tensão de base, de modo que o potencial base-emissor a polariza diretamente. A vantagem deste circuito é que um aumento da corrente de coletor aumenta, por sua vez, a queda em R_e, de modo que a corrente de base é reduzida.

Positive feedback is a <u>feedback</u> system in which the system responds to the <u>perturbation</u> in the same direction as the perturbation (It is sometimes referred to as **cumulative causation**). In contrast, a system that responds to the perturbation in the opposite direction is called a <u>negative feedback</u> system.

The term "positive" means responding to the same direction as the perturbation whereas "negative" means responding to the opposite direction.

Nota: - O circuito aplica-se igualmente ao tipo **pnp** se a polaridade de V_{CC} for invertida.

No projeto de um circuito amplificador transistorizado, há dois conjuntos de condições a considerar. Um deles é o conjunto d.c. de condições, o outro, é o conjunto a c. ou rf. de condições. Ambos são descritos na fig.3

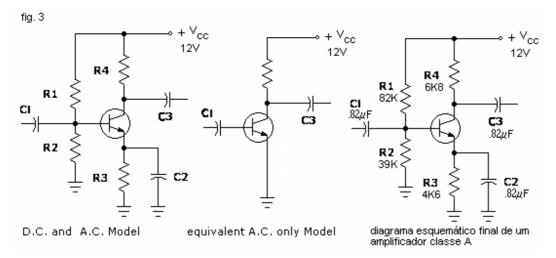
No caso das condições d.c. é necessário superar um aspecto peculiar deste tipo de transistor. Isto é feito, aplicando na base uma tensão aproximadamente 0.65V mais alta que o nível de tensão do emissor. De fato o uso desta propriedade permite que o transistor seja utilizado como uma simples chave.

Com o amplificador classe A, isto é feito da seguinte forma:

No diagrama da fig.3, é utilizada a fonte habitual de alimentação, 12V d.c.; um resistor entre a fonte e a base e outro da base ao terra. Há também um resistor da fonte ao coletor e outro do emissor ao terra. Os resistores associados à base R_1 e R_2 , formam um divisor de tensão

(
$$R_2/(R_1+R_2)$$
)12V = Voltagem da base (d.c.)

 $Com\ R_1\ e\ R_2\ em\ K\Omega$, 82K para $R_1\ e\ 39K$ para $R_2\ a$ tensão na base é: 39K/(82K+39K)*12V=3.87V (d.c.) A corrente que circula por estes resistores (negligenciando qualquer corrente de base) é – pela lei de ohm


$$I = 12/(R1+R_2) = 0.1 \text{ mA}$$

Em circuitos práticos, a corrente de emissor está entre 5 e 10 vezes a corrente que circula por estes resistores. Sendo adotado um valor nesse intervalo de 7 vezes isto é 0.7mA para a corrente de emissor. Se uma corrente maior de emissor for requerida então a corrente de base deve ser aumentada para manter a relação aproximada.

O valor calculado da tensão de base é de 3.87V, mas ela deve ser 0.65V maior que a de emissor, então a queda de tensão no emissor deve ser (3.87-0.65), ou seja, 3.22V. Se a corrente de emissor é 0.7mA então o resistor de emissor R_3 deve ser – pela lei de ohm

$$R_3 = 3.22/0.0007 = 4600$$
 ohms ou próximo (4K7)

O resistor de coletor R₄ também chamado resistor de carga poderia ser um transformador ou um circuito ressonante

No caso das condições $\,$ a.c. são utilizados capacitores de acoplamento. Estes são $\,$ C $_1$ e $\,$ C $_3$. A função de $\,$ C $_1$ e $\,$ C $_3$ é bloquear o componente d.c. de modo que as tensões d.c. neste estágio não sejam transferidas aos estágios adjacentes. Usualmente é adotada a mais baixa reatância XC na frequencia de interesse de modo que o sinal não seja impedido de ser transferido.

Um capacitor de 0.82μ F tem uma reatância de aproximadamente 650Ω em 300hertz e de 65Ω em 300hertz. Estes são os limites de frequencias de áudio para finalidade de comunicações. Estes valores de C são considerados baixos. Naturalmente, um valor mais elevado (tipos eletrolíticos) pode ser usado.

Se este fosse um amplificador de alta fidelidade certamente seriam adequados valores de ${\bf C}\,$ mais elevados.

Para propósitos a.c. ou r.f. o emissor deve ser aterrado. Na condição a.c. a existência do resistor de emissor conectado ao terra causa uma queda no ganho por causa da "degeneração do emissor". O capacitor de desacoplamento C_2 "by-pass" o resistor de emissor R_3 (C_2 desvia os sinais a.c do resistor R_3 de polarização de emissor). Com C_2 de mesmo valor C_1 ou C_3 o resistor de emissor R_3 fica invisível para propósitos a c. ou r.f.

Material:

Multímetro

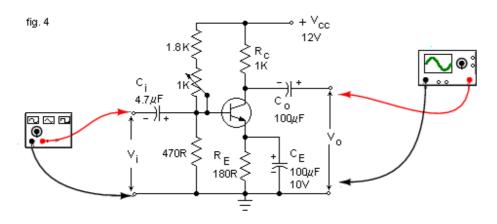
Conectores

Transistor de uso geral

Osciloscópio

Fonte de tensão 12V d.c.

Gerador de áudio


Potenciômetro 1K linear 0.4W

Resistores 180/1W, 470R/1W, 1K/1W, 1K8/1W

Capacitores $0.1\mu F/500V$, $0.47\mu F/160V$, $100\ \mu F/35V$, $4.7\mu F/400V$, $10\mu F/250V$.

Procedimento:

1.Monte o circuito da fig.4, utilizando o "board" de modo que capacitores (C_E) de diferentes valores possam ser conectados.

a. Ajuste a frequencia do gerador de sinais para 1kHz (senoidal) e complete a tabela 1.

tabela 1

٧	_i (۷)	0,02	0,05	0,2	0,5	2	5	10	20	
v,	(V)									

b.Desconecte C_E do circuito e complete a tabela 2.

36III 3E										
٧	(V)	0,02	0,05	0,2	0,5	2	5	10	20	
٧	(V)									

c.Usando o "Graphical Analysis" ou um analisador gráfico qualquer, faça o gráfico de V_o versus V_i , para a tabela 2, superposto ao mesmo gráfico para a tabela 1. Um típico resultado para este circuito é mostrado na fig.5. d.Mediante análise do gráfico, determine para cada circuito o ganho em tensão. Compare os resultados.

2. Conecte no "board" o circuito da fig.4

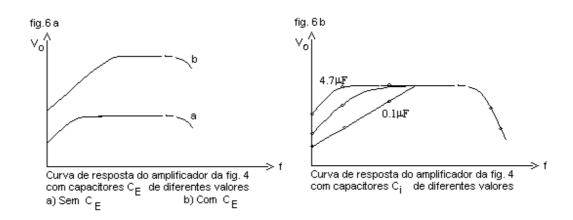
a. Ajuste a tensão de entrada para $V_i = 100 \text{mV}$ e complete a tabela 3.

tabela 3

Com
$$C_E = 100 \,\mu\text{F}$$
 $V_i = 100 \text{mV}$
 $f(\text{Hz})$ 10 10 2 10 3 10 4 10 5

 $V_0 \, (\text{V})$

tabela 4							
Sem C _E		∨ _i = 100m∨					
f(Hz)	10	10 ²	10 ³	10 4	10 ⁵		
V ₀ (V)							


b.Desconecte C_E do circuito e complete a tabela 4.

c.Determine a curva de resposta do circuito. O que poderá ser obtido é mostrado na fig. 6a.

3. Monte no "board" o circuito da fig. 4 de modo que capacitores C_i de diferentes valores possam ser conectados.

a. Ajuste a tensão V_i para 100mV e complete as tabelas 5a e 5b.

b. Usando o "Graphical Analysis" ou um analisador gráfico qualquer, faça o gráfico de V_o versus f, para a tabela 5b, superposto ao mesmo gráfico para a tabela 5a. A fig.6b, mostra um esboço do gráfico . Compare os resultados.

Referências:

Brophy J. Eletrônica Básica, Rio de Janeiro, Guanabara Dois S.A, 1978. Plant, Macolm. Basic Eletronics, London, SCDC Publications, 1990

Harowitz P.; Hill W.The Art of Eletronics, USA, Cambridge University Press, 1989.

Prof. Franklin