Área: CV(X) CHSA() ECET()

ESTADO NUTRICIONAL E CLOROFILA FOLIAR DO MARACUJAZEIRO-AMARELO SOB USO DE BIOFERTILIZANTES, CALAGEM E ADUBAÇÃO COM NITROGÊNIO E POTÁSSIO

Gabriel Barbosa da Silva Júnior (bolsista do PIBIC/CNPq), Francisca Gislene Albano (bolsista do PIBIT/CNPq), Leonardo Fonseca da Rocha (bolsista do PIBIC/CNPq), Ítalo Herbert Lucena Cavalcante (Orientador, Depto. de agronomia – UFPI/CPCE), Josy Anteveli Osajima (colaboradora, UFPI/CPCE), João Samy Nery de Sousa (colaborador, UFPI/CPCE) Marcelo dos Santos Cunha (colaborador, UFPI/CPCE)

1. INTRODUÇÃO

O maracujazeiro-amarelo (*Passiflora edulis* f. *flavicarpa* Deg.) é uma cultura em expansão no Brasil, encontrando condições adequadas de solo e clima para expressar seu potencial, o que torna o país o maior produtor mundial dessa fruta as regiões Norte e Nordeste detentoras de mais de 50% da produção nacional (IBGE, 2011).

Assim, o uso da adubação orgânica para essa cultura é cada vez mais frequente, tendo como objetivo o cultivo de plantas mais vigorosas, razão pela qual uma adubação equilibrada é considerada essencial visando alcançar maior longevidade, melhor sanidade e, sobretudo, elevada produtividade.

Dessa forma, o presente trabalho tem como objetivo avaliar o efeito da adubação com 50 e 100% de NK, na ausência e presença de calagem e de biofertilizantes simples e enriquecido aplicados no solo sobre o estado nutricional e clorofila foliar do maracujazeiro-amarelo em Bom Jesus, PI.

2. MATERIAL E MÉTODOS

O experimento foi desenvolvido no período de março a novembro de 2010, na área experimental da universidade federal do Piauí (UFPI/CPCE), localizado às coordenadas geográficas 09°04'33" de latitude Sul, 44°21'29" de longitude Oeste com altitude média de 277 m.

O experimento foi desenvolvido em esquema fatorial 2 x 3 x 2, correspondentes à: i) calagem (solo sem e com calcário); ii) aplicação dos biofertilizantes: testemunha (sem biofertilizante), biofertilizante simples (esterco bovino fresco fermentado em água) e biofertilizante enriquecido (esterco bovino fresco fermentado em água + fósforo + cinzas); iii) adubação mineral (50 e 100% de NK). Os tratamentos foram distribuídos em blocos ao acaso, com 4 repetições e 2 plantas de maracujazeiro por parcela, com duas bordaduras, totalizando 192 plantas, numa área de 1.073 m².

Determinou-se a concentração foliar dos macronutrientes segundo a metodologia descrita por Malavolta (1997): a) nitrogênio: semi-micro-Kjeldahl; b) fósforo total: colorimetria do metavanadato; c) potássio: fotometria de chama de emissão; d) cálcio e magnésio: quelatometria do EDTA.

Os resultados foram submetidos à análise de variância pelo Teste "F" e pelo Teste de Tukey para comparação das médias, seguindo as recomendações de Ferreira (2000) usando o software ASSISTAT (SILVA & AZEVEDO, 2006).

3. RESULTADOS E DISCUSSÃO

A interação calagem, biofertilizantes e adubação mineral exerceu efeito significativo sobre as concentrações de N, Ca Mg, P e K, situação que evidencia interdependência entre os fatores estudados para estas variáveis, conforme indicado na tabela 1. Observou-se também efeito individual da calagem nos teores de N, P, K e Ca (p < 0,01), enquanto que o magnésio não sofreu efeito desse fator. Já os biofertilizantes e a adubação mineral causaram efeitos individuais para o N, K, Ca e Mg ao nível de 1% de probabilidade (Tabela 1).

Tabela 1. Concentrações de nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e clorofila nas folhas de maracujazeiro-amarelo em função de diferentes biofertilizantes, ausência e presença de calagem e doses de nitrogênio e potássio.

	' '	0			
FV	N	Р	K	Ca	Mg
	g kg ⁻¹				
Calagem (C)	76,87**	12,76**	1373,42**	35,26**	0,97 ^{ns}
Ausência	35,62 a	2,58 a	14,92 a	4,16 a	1,28 a
Presença	34,36 b	2,07 b	13,37 b	3,30 b	1,37 a
DMS	0,29	0,29	0,08	0,29	0,18
Biofertilizantes (B)	374,14**	1,87 ^{ns}	1711,13**	22,45**	15,32**
Sem Bio	37,18 a	2,46 a	14,84 b	3,52 b	1,34 b
Bio Simples	32,41 c	2,38 a	12,44 c	3,28 b	1,02 c
Bio Enriquecido	35,39 b	2,13 a	15,15 a	4,40 a	1,63 a
DMS	0,43	0,43	0,12	0,43	0,27
Adub. mineral (A)	42,78**	3,36 ^{ns}	4235,46**	13,77**	14,41**
50% de NK	34,53 b	2,46 a	12,79 b	3,47 b	1,16 b
100% de NK	35,47 a	2,19 a	15,49 a	4,00 a	1,50 a
DMS	0,29	0,29	0,08	0,29	0,18
СхВ	112,50**	9,34**	2460,97**	30,71**	51,61**
CxA	76,87**	0,05 ^{ns}	13,07**	0,55 ^{ns}	9,81**
BxA	36,73**	0,58 ^{ns}	1303,25**	6,75**	32,96**
CxBxA	16,11**	4,27*	379,22**	15,01**	43,02**
CV	1,42	21,38	1,02	13,33	23,46

C.V. = coeficiente de variação; ** = significativo ao nível de 1% de probabilidade (p < 0,01); * = significativo ao nível de 5% de probabilidade (p < 0,05). Médias seguidas de mesma letra nas colunas não diferem entre si; DMS = diferença mínima significativa.

O teor de N foliar das plantas foi influenciado pela interação tipos de biofertilizantes x calagem, com superioridade para o tratamento sem biofertilizante na ausência da calagem, com valores oscilando de 30,36 a 37,80 g kg⁻¹. Observa-se que houve superioridade da interação ausência de calagem e 100% de NK apresentando uma concentração foliar de N de 36,72 g kg⁻¹ de matéria seca. Os biofertilizantes simples e enriquecido reduziram os teores foliares de N nas plantas de maracujazeiro-amarelo quando comparados à testemunha, tanto na dose 50% como 100% de NK, sendo este último o que teve maior resultado, apresentando 37,38 g kg⁻¹.

Entre os biofertilizantes, a concentração de P variou de 1,95 g kg⁻¹ para o biofertilizante enriquecido até 2,95 g kg⁻¹ para a ausência de biofertilizante, mostrando que o biofertilizante enriquecido causou uma redução no teor foliar desse nutriente.

A acumulação de K nas folhas foi inibida pela adição de calcário no solo, no qual se observa que as plantas cultivadas na ausência de calagem, apresentaram valores médios de 14,92 g kg⁻¹ do nutriente na matéria seca foliar, o que representa uma superioridade de 10,5% em relação à presença do corretivo no solo. Verifica-se uma superioridade da dose 100% de NK em relação à dose 50% da adubação tanto na ausência quanto na presença de calagem sendo que o maior valor de K foi expresso quando não se utilizou o corretivo no solo apresentando 16,18 e g kg⁻¹ do nutriente na matéria seca foliar. Houve incremento desse nutriente com o aumento da dose de NK de 50 para 100% da adubação recomendada tanto na ausência de biofertilizante quanto nos biofertilizantes simples e enriquecido, sendo este, o que apresentou os maiores teores de K, 15,26 g kg⁻¹.

A calagem inibiu a acumulação de Ca nas folhas do maracujazeiro, com teor médio de 3,30 g kg⁻¹ de matéria seca enquanto que na ausência desse corretivo as plantas presentaram em média 4,16 g kg⁻¹ de Ca (Tabela 1). Os tratamentos com biofertilizantes simples e enriquecido apresentaram valores de Ca superiores à testemunha na dose 50% de NK, enquanto que na ausência de biofertilizantes a dose 100% de NK apresentou teores de cálcio superior à metade da adubação.

A acumulação de Mg nas folhas de maracujazeiro-amarelo foi influenciada pela interação tipos de biofertilizantes x calagem, sendo que o biofertilizante enriquecido apresentou superioridade em relação aos demais na presença de calagem com média de 2,21 g kg⁻¹. A dose 100% de NK na ausência de calagem apresentou uma maior concentração foliar de K em relação à metade da dose, com valores de 0,97 a 1,60 g kg⁻¹ respectivamente.

4. CONCLUSÕES

Os teores dos macronutrientes foliares de plantas de maracujazeiro-amarelo são influenciados pela aplicação de calcário, doses de biofertilizantes e adubação mineral.

O biofertilizante enriquecido estimula acúmulo de K, Ca e Mg na matéria seca da parte aérea de plantas de maracujazeiro-amarelo.

A dose 100% de NK é mais eficiente no acúmulo de N, K, Ca e Mg na massa seca foliar do maracujazeiro-amarelo.

5. REFERÊNCIAS BIBLIOGRÁFICAS

IBGE – Instituto Brasileiro de Geografia e Estatística. Levantamento sistemático da produção agrícola. http://www.ibge.gov.br/. 18 Jun. 2011.

MALAVOLTA, E.; VITTI, G.C.; OLIVEIRA, S.A. **Avaliação do estado nutricional das plantas:** princípios e aplicações. Piracicaba: Potafos, 1997. 319p.

SILVA, F. de A. S. E; AZEVEDO, C. A. V. de. A new version of the assistat-statistical assistance software. In: WORLD CONGRESS ON COMPUTERS IN AGRICULTURE, 4., 2006, Orlando-FL-USA. *Anais...* Orlando: American Society of Agricultural Engineers, 2006. p. 393-396.

Palavras-chave: Adubação orgânica. Passiflora edulis. Nutrição de plantas.