O GRUPO FUNDAMENTAL E A GEOMETRIA GLOBAL DAS VARIEDADES.

Genival Francisco Fernandes da Silva Jr (bolsista do PIBIC/UFPI), Newton Luís Santos (Orientador, Depto. de Matemática – UFPI)

RESUMO

Neste trabalho será discutido um pouco sobre o estudo do grupo fundamental de certos

espaços bem como alguns resultados de Topologia Algébrica.

Palavras chave: Grupo Fundamental. Topologia Algébrica.

INTRODUÇÃO

O grupo fundamental é o primeiro de uma série de grupos denominados de grupos de homotopia, que

são grupos cujos pontos são classes de equivalência de aplicações, no caso do $\pi 1(S1)$, do

intervalo 0,1 em S1. Historicamente o conceito de grupo fundamental emergiu da teoria das

superfícies de Riemann com o trabalho de Bernhard Riemann, Henri Poincaré e Felix Klein.

METODOLOGIA

No presente trabalho, calculamos o grupo fundamental do círculo e extraímos a partir daí, algumas consequências interessantes que nos possibilitam desde a demonstração do Teorema Fundamental da Álgebra até a classificação de superfícies compactas.

RESULTADOS E DISCUSSÃO

Definição: Seja X um espaço e $p \in X$, tome $f,g:[0,1] \rightarrow X$, funções contínuas satisfazendo:

f0=g0=f1=g1=p

Definimos a operação *por:
f*gxf2x se 0≤x≤12g2x-1 se 12≤x≤1
\acute{E} um bom exercício mostrar que o a operação entre as classes de equivalências de caminhos em X ,
definida por:
$f^*g=[f^*g]$
Dá ao conjunto dessas classes a estrutura de um grupo, chamado grupo fundamental de X (ou
$\pi 1(X,p)$) em p .
O teorema principal do nosso projeto foi o seguinte: Teorema: O grupo fundamental do círculo é isomorfo ao grupo aditivo dos inteiros.

(Idéia da prova). Existem algumas maneiras interessantes de mostrar o isomorfismo citado, uma

delas é mais construtiva e descreve explicitamente um isomorfismo que seria $\phi: z \longrightarrow \pi 1(S1)$ dado

por $\phi n = \omega n(s)$ onde $\omega ns = (cos2\pi ns, sin2\pi ns)$.

A partir daí podemos conseguir muitos resultados, dentre eles o teorema fundamental da álgebra:

Teorema (Fundamental da Álgebra): O corpo dos números complexos é algebricamente fechado.

CONCLUSÃO

O estudo do grupo fundamental de certos espaços, bem como suas consequências são de extrema importância para o entendimento da topologia algébrica como um todo, pois os conceitos de homologia, cohomologia e outros grupos de homotopia, estão diretamente relacionados com o grupo fundamental.

APOIO: Este trabalho contou com o apoio e bolsa provenientes do PIBIC/UFPI.

REFERÊNCIAS BIBLIOGRÁFICAS

MUNKRES, James. Topology.2 ed. New Jersey: Prentince Hall, 2000.

MASSEY, William S.A Basic Course in Algebraic Topology. New York:Springer, 1991.

HARPER, JohnR; GREENBERG, Marvin J. Algebraic Topology, a first course. Canada: Addison-Wesley, 1981.