ANÁLISE DA POPULAÇÃO DE CÉLULAS T REGULADORAS EM PACIENTES PORTADORES DE TUBERCULOSE PULMONAR

Saara Barros Nascimento (bolsista do PIBIC/CNPQ), Raimundo Nonato da Silva (colaborador, UFPI), Rubens de Sousa Santana (colaborador, UFPI), Adalberto Socorro da Silva (orientador, Departamento de Biologia, UFPI)

Introdução

A tuberculose (TB) permanece como uma das doenças infecciosas mais importantes em termos de morbidade e mortalidade em todo o mundo. Na maioria dos indivíduos, a infecção com o Mycobacterium tuberculosis (MTB), seu principal agente etiológico, provoca uma resposta imune específica que resolve a infecção. Em alguns pacientes, entretanto, a eliminação das bactérias não ocorre. Tal persistência parece estar associada a uma imunidade Th1 ineficiente. A identificação de subconjuntos de células T CD4+ reguladoras (Treg) com função imunossupressora, juntamente com a demonstração de que elas podem suprimir a resposta Th1 efetora contra patógenos infecciosos, expandiu nosso entendimento dos mecanismos de regulação das respostas de células T durante processos infecciosos. Estas células diferem das células CD4+ efetoras por expressar o fator de transcrição fundamental para o desenvolvimento e função supressora dessas células, conhecido como FoxP3. Relatos recentes indicam que células T CD4+CD25+ também podem contribuir para a modulação negativa das respostas imunes anti-TB, de modo que o controle da infecção é dado por um balanço entre respostas imunes efetoras e supressoras. Outro mecanismo que parece importante nessa imunossupressão é a ocorrência de células emigrantes tímicas recentes (PTK7⁺), cuja imaturidade impede que haja uma resposta celular efetiva. O presente estudo tem como objetivo determinar a frequência das células Treg em pacientes portadores de tuberculose pulmonar. A título de acréscimo, antecipará alguns pontos interessantes que serão objetos de estudo em trabalhos posteriores.

Metodologia

As amostras de sangue periférico (5 ml) foram coletadas dos pacientes portadores de tuberculose pulmonar internados no serviço de Pneumologia do Hospital Getúlio Vargas, Teresina – Piauí, após assinatura de um Termo de Consentimento Livre e Esclarecido especialmente elaborado para este estudo. Além do material biológico, os pacientes contribuíram com informações referentes às suas condições gerais. As amostras foram levadas ao Laboratório de Imunogenética e Biologia Molecular (LIB) – Universidade Federal do Piauí (UFPI), onde foram processadas segundo as especificações do Comitê de Ética em Pesquisa da UFPI.

O sangue periférico foi submetido à separação de células com Ficoll-paque. As células mononucleadas foram isoladas e passaram pelo processo de separação magnética negativa de linfócitos T. Para isso, foram usados anticorpos marcados com biotina, direcionados a todas as células brancas, exceto linfócitos T. Em seguida, anticorpos anti-biotina magnetizados foram adicionados à mistura. Assim, somente os linfócitos T não ficaram retidos na coluna magnética. Eles foram coletados e a imunofenotipagem realizada, recorrendo-se a anticorpos direcionados aos marcadores típicos das células Treg (CD25/Foxp3/CD4) e conjugados com os seguintes fluorocromos: anti-CD25 com FITC; anti- Foxp3 com PE e anti-CD4 com PerCP. Como supracitado, pontos extras serão ressaltados, como a busca de células emigrantes tímicas recentes. Para tal, foram usados anticorpos anti-PTK7 conjugados com PE. A suspensão obtida foi avaliada quanto à expressão dos marcadores em citômetro de fluxo (BD, FACSCanto II), através do software BD FACSDiva®.

Para comparação entre a porcentagem de células Treg (CD4⁺CD25^{hi+}Foxp3⁺) em pacientes portadores de tuberculose pulmonar no início do tratamento e controles saudáveis, que é objetivo central do nosso estudo, foi usado o Teste-t não pareado através do software GraphPad Prism 5. Para as comparações, por hora, secundárias, foi usado o teste One-Way ANOVA, do mesmo software. As diferenças foram consideradas significativas quando o valor de p foi menor que 0,05.

Resultados e Discussão

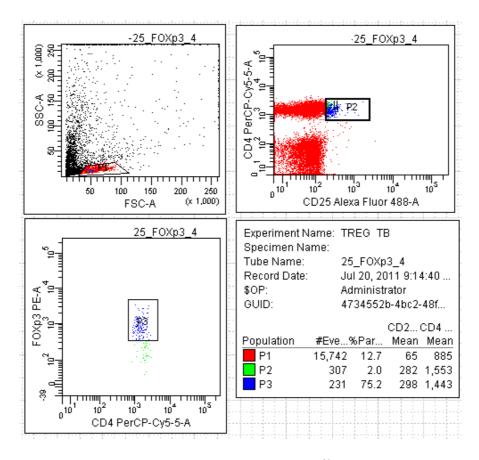


FIGURA 01. Análise da expressão de FoxP3 nas células CD4⁺CD25^{hi+} em paciente portador de tuberculose pulmonar (nesse caso, o sangue passou pelo processo de purificação). Laboratório de Imunogenética e Biologia Molecular (LIB), Teresina, 2011.

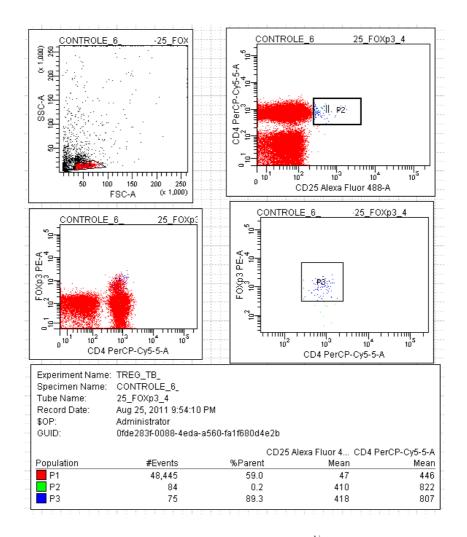


FIGURA 02. Análise da expressão de FoxP3 nas células CD4⁺CD25^{hi+} em controle saudável. Laboratório de Imunogenética e Biologia Molecular (LIB), Teresina, 2011.

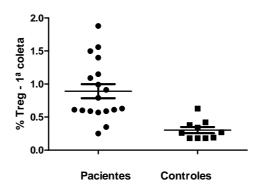


FIGURA 03. Comparação entre a porcentagem de células Treg encontradas no sangue periférico de pacientes portadores de tuberculose pulmonar no início do tratamento (n=18) e controles saudáveis (n=10) (p=0,0005). Laboratório de Imunogenética e Biologia Molecular (LIB), Teresina, 2011.

É possível perceber um aumento da população de células Treg nos pacientes com tuberculose pulmonar, quando comparado com os indivíduos sabidamente saudáveis. Nos casos de tuberculose essa população corresponde em média a $0.8928\% \pm 0.1067\%$ (N=18) da população de linfócitos; nos pacientes saudáveis essa porcentagem passa a ser de $0.3030\% \pm 0.04583\%$ (N=10) (p=0,0005) (FIGURAS 01, 02 e 03). Portanto, os

resultados sugerem um maior *out put* tímico de células com fenótipo regulador no contexto da tuberculose pulmonar. Não obstante os nossos achados, serão necessários estudos funcionais adicionais para avaliarmos se o aumento dessa população celular é uma estratégia empregada pelo patógeno para evasão da resposta imune inflamatória.

Quando analisados os questionários aplicados para análise do perfil dos pacientes com tuberculose, foi possível perceber que é guardada uma relação dos sintomas clínicos com fatores de risco, idade e porcentagem de células Treg encontradas no sangue periférico do paciente. Assim, quanto mais células com o fenótipo CD4⁺CD25^{hi+}Foxp3⁺ e/ou mais idoso o paciente e/ou mais fatores de risco estiverem associados, maior tende a ser a quantidade e/ou intensidade dos sintomas referidos.

Num segundo momento, procurar-se-á saber se essas células são ou não emigrantes tímicas recentes. Para isso, serão buscadas aquelas células que possuem o marcador de superfície PTK7, nelas expresso. A teoria é que porcentagem significativa dessas células seja emigrante tímica recente, fato que explicaria sua imaturidade e consequente limitação da função efetora das células T. Todo o tratamento dos pacientes será acompanhado, para, com isso, observar que no decorrer do tratamento há uma diminuição da quantidade dessas células. A seguir (FIGURAS 04 e 05), serão apresentados alguns resultados parciais, uma espécie de prévia do que continuará sendo feito.

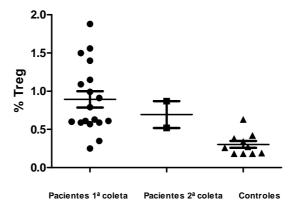


FIGURA 04. Comparação entre a porcentagem de células Treg encontradas no sangue periférico de pacientes portadores de tuberculose pulmonar no início do tratamento (n=18), pacientes com 3 meses de tratamento (n=2) e controles saudáveis (n=10) (p= 0,0018). Laboratório de Imunogenética e Biologia Molecular (LIB), Teresina, 2011.

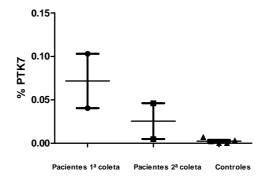


FIGURA 05. Comparação entre a porcentagem de células Treg que são PTK7⁺ encontradas no sangue periférico de pacientes portadores de tuberculose pulmonar no início do tratamento (n=2), pacientes com 3 meses de tratamento (n=2) e controles saudáveis (n=10) (p=0,0251). Laboratório de Imunogenética e Biologia Molecular (LIB), Teresina, 2011.

Outro objetivo do trabalho que continuará, é tentar elucidar alguns mecanismos de ação das células nTreg. Muitos estudos mostram que o contato célula-célula é necessário. Outros sugerem o papel de citocinas como a IL-10 e o TGF-β1. Será investigado, o quão importante é o papel das citocinas nesse mecanismo, através de sua busca no plasma dos pacientes.

Conclusão

Os pacientes portadores de tuberculose pulmonar possuem um aumento na frequência de células T reguladoras naturais, bem como uma elevação relativa na quantidade de células T com fenotipagem característica de emigrantes tímicos recentes. Portanto, esses probandos têm uma configuração imunológica tipicamente favorável ao desenvolvimento da doença, provavelmente em função de uma resposta imunitária de defesa ineficiente.

Apoio

Esse trabalho foi financiado e apoiado pelo Laboratório de Imunogenética e Biologia Molecular (LIB) da Universidade Federal do Piauí (UFPI).

Palavras-chave: Tuberculose. Imunorregulação. Células T.

Referências Bibliográficas

DYE, C. Global epidemiology of tuberculosis. Lancet. 367:938, 2006.

FONTENOT, J. D., AND A. Y. RUDENSKY. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. **Nat Immunol.** 6:331, 2005.

GUYOT-REVOL, V., J. A. INNES, S. HACKFORTH, T. HINKS, AND A. LALVANI Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am **J Respir Crit Care Med**.173:803, 2006.

HAINES, C. J. ET AL. Human CD4+ T Cell recent Thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. **JEM**. v. 206, 2009.

HE, XY., XIAO, L., CHEN, HB., LI, J., WANG, YJ., HE, K., GAO, Y., SHI, BY. Tregulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. **Eur J Clin Microbiol Infect Dis**. 29: 643, 2010.

HIRSCH, C. S. *ET AL*. Depressed T-cell interferon-gamma responses in pulmonary tuberculosis: analysis of underlying mechanisms and modulation with therapy. **J Infect Dis**. 180:2069, 1999.

JO, E. K., J. K. PARK, AND H. M. DOCKRELL. Dynamics of cytokine generation in patients with active pulmonary tuberculosis. **Curr Opin Infect Dis**. 16:205, 2003.

LIENHARDT, C., A. *ET AL*. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. **Eur J Immunol**. 32:1605, 2002.

MCGUIRK, P., AND K. H. MILLS. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. **Trends Immunol**. 23:450, 2002.

RIBEIRO-RODRIGUES, R., T. RESENDE CO, R. ROJAS, Z. TOOSSI, R. DIETZE, W. H. BOOM, E. MACIEL, AND C. S. HIRSCH. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. **Clin Exp Immunol**. 144:25, 2006.

RONCADOR, G., *ET AL*. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. **Eur J Immunol.** 35:1681, 2005.

SAKAGUCHI, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. **Nat Immunol**. 6:345, 2005.