ESTUDO DA ESTABILIDADE OXIDATIVA EM BLENDS DE BIODIESEL DE SOJA E BURITI POR RANCIMAT

Marcos Felipe de Sousa Santos (bolsita do PIBIC-EM/CNPq),Francisca Rute Carvalho de oliveira (colaborador, CAT-UFPI) Dy Napolles Sampaio Reis(colaborador, Depto de Química – UFPI), Rondenelly Brandão da Silva (colaborador, RENORBIO-UFPI),Francisco Cardoso Figueiredo (orientador, CAT – UFPI)

Palavras Chave: estabilidade oxidativa, blend, rancimat

INTRUDUÇÃO

Tendo em vista que o biodiesel é suscetível à sofrer autoxidação quando exposto ao ar, pois os óleos vegetais utilizados como suas matérias-primas contêm compostos insaturados, os quais estão sujeitos a reações de oxidação que se processam a temperatura ambiente, diferentemente dos óleos derivados do petróleo, que são estáveis mesmo em excesso de oxigênio. Este processo afeta a qualidade do combustível, especialmente em longos períodos de estocagem. O óleo de Buriti (*Mauritia flexuosa*) é uma alternativa economicamente interessante para a realidade brasileira. O alto teor de β-caroteno em sua composição lhe confere uma alta estabilidade oxidativa, Portanto o estudo desse biodiesel torna-se relevante, pois o mesmo pode ser utilizado como aditivo antioxidante em misturas com outros de estabilidade térmica e oxidativa mais pobres. Este trabalho visa estudar a estabilidade oxidativa das misturas de biodiesel de soja/buriti através do teste Rancimat

METODOLOGIA

Material

- Óleo de Buriti comprando no Mercado Central de Teresina
- Óleo de soja (marca Soya)
- Balança analítica
- Agitador magnético(IKA-modelo:RHB1)
- Funil de separação
- Balão de fundo chato de 500 ml
- Erlenmeyer
- Proveta
- Hidróxido de sódio
- Metanol
- Fenolftaleína

O biodiesel de Soja e Buriti foram obtidos através da reação de transesterificação utilizando Catalise homogênea NaOH na concentração de 0,5% m/m e razão molares óleo vegetal/álcool metílico de 1:6 e 1:7, respectivamente. Após o processo de separação, lavagem e purificação, as blends foram obtidas nas

seguintes proporções: 50, 60, 70, 80 e 90%. A caracterização físico-química das amostras de biodiesel foi realizada conforme as normas da *American Society of Testing and Materials* (ASTM), *British Standart* (BS EN) e *Associação Brasileira de Normas Técnicas* (ABNT) de acordo com a Resolução n°7/2008 da Agência Nacional do Petróleo Gás e Biocombustíveis (ANP). Os ensaios de estabilidade oxidativa foram realizados conforme a norma Européia (EN 14112), utilizando o equipamento METROHM, modelo Rancimat 843. As amostras foram analisadas sob aquecimento a 110°C, fator de correção (ΔT) fixado em 0.9°C, com fluxo constante de ar de 10L/h,. O término da análise se deu quando a condutividade atingiu 200μS.cm¹.

RESULTADOS E DISCUSSÃO

Na Tabela 1 estão apresentados os dados referentes à caracterização físico-química das amostras de biodiesel de Soja e Buriti. Pode-se observar que mesmo pelas poucas analises o biodiesel de soja apresentou-se em conformidade as especificações vigentes da Resolução ANP N°7/2008 em poucos ensaios. Enquanto o biodiesel de buriti apresentou elevada viscosidade cinemática, além de uma elevada acidez, possivelmente atribuída a presença de ácidos graxos livres no biodiesel, que pode ser o responsável pela água no combustível, uma vez que os ácidos graxos podem ser formados pela hidrólise dos ésteres tanto nos triglicerídeos da matéria-prima como no biodiesel durante sua obtenção

Tabela 1. Caracterização físico-química do Biodiesel de Soja e Buriti.

Propriedades	B100 DE SOJA	B100 DE BURITI	Limites*
Índice de Acidez (mgKOH.g-1)	0,3	1,7	≤ 0,5
Viscosidade Cinemática 40°C (mm²s-1)	4,1	7,2	3,0-6,0

* Resolução ANP N 42/2009

Na Tabela 2 mostra o efeito da adição do biodiesel de buriti ao biodiesel de soja frente a sua estabilidade oxidativa. Observa-se que o biodiesel de buriti gera uma melhora na estabilidade oxidativa do biodiesel de soja à medida que a sua concentração aumenta. A blend que contem 30% de buriti apresentou 6,51 horas pelo método Rancimat, esta, já atenderia a especificação de estabilidade oxidativa que deve ser de no mínimo 6 horas através do método Rancimat.

Tabela 2. Períodos de Indução obtidos pelo método Rancimat (EN 14112)

Amostras	PI (h)
Biodiesel de Buriti (B100)	46,43
Biodiesel de Soja (B100)	4,45
Blend 50%Soja/Buriti	5,32
Blend 60% Soja/Buriti	5,76
Blend 70% Soja/Buriti	6,51
Blend 80% Soja/Buriti	7,10
Blend 90% Soja/Buriti	8,24

CONCLUSÃO

Concluímos que o biodiesel de buriti não apresente características apropriadas para ser utilizado em motores a diesel, salvo a estabilidade oxidativa, porém a adição de biodiesel de buriti promove ao biodeiesel de soja uma melhor estabilidade oxidativa a partir de uma blend de 30%.

AGRADECIMENTOS

CNPq, CAT-UFPI, LAPETRO, USINA DE BIODIESEL-UFPI, GRUPO BIOELETROQUÍMICA

REFENRÊNCIAS

ALBUQUERQUE, M.L.S.; GUEDES, I.; ALCANTARA JR., P.; MOREIRA, S.G.C.; BARBOSA NETO, N.M.; CORREA, D.S.; ZILIO S.C. Characterization of. Buriti (Mauritia flexuosa L.) Oil by Absorption and Emission Spectroscopies J. Braz. Chem. Soc., v.16, n°6 a, p.1113-1117, 2005.

FIGUEIREDO, Francisco Cardoso, **Obtenção de polímeros de LCC para aplicação como antioxidante de biodiesel de soja**, Dissertação de Mestrado, Departamento de Ciências e Engenharia de Materiais, Universidade Federal do Rio Grande do Norte. Natal: 2009.

LIMA, J. R. O.; SILVA, R. B.; SILVA, C. C. M.; SANTOS, L. S. S.; SANTOS Jr, J. R.; MOURA, E. M.; MOURA, C. V. R. Biodiesel de babaçu (Orbignya sp.) obtido por via etanólica. Quim. Nova, v. 30, n. 3, p. 600-603, 2007

LIMA, J. R. O.; Síntese e caracterização físico-química, térmica e espectroscópica de biodiesel de babaçu (Orbygnia SP), tucum (Astrocaryum vulgare), macaúba (Acrocomia aculeata) e soja (Glycine max) por rota alcalina metílica e etílica. Dissertação de mestrado, Departamento de Química, Universidade Federal do Piauí, Brasil, 2005

PARENTE, E.J. de S., SANTOS JUNIOR, J.N., PEREIRA, J.A.B., PARENTE JUNIOR, E.J. de S. **Biodiesel: uma aventura tecnológica num país engraçado**. Fortaleza: Tecbio, 2003, 41p